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Graph Token Control of Multi-Knowledge-Level LLM Agents for
Peer Learning Systems

So we'll circle We will talk about
back once that's this later, after the
sorted out. problem is fixed.

The woman's utterance in scene 2 can be defined as “comprehensible input”.
However, how can we use LLMs to create "comprehensible input™?

Knowledge Graph

* ol

output

So we'll circle back
once that’s sorted out.

We will talk about this later,
after the problem is fixed.
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Life is difficult and life is beautiful.

Make it better and better by
ourselves.
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